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LOW-SPEED AERODYNAMIC CHARACTERISTICS OF A
CANARD AIRPLANE CONFIGURATION HAVING SPLIT FLAPS LOCATED
AHEAD OF THE WING; TRATLING EDGE AND LEADING- AND
TRAILING-EDGE FLAPS ON THE CANARD CONTROL

By Bernard Spencer, Jr.
SUMMARY

An investigation has been conducted at low subsonic speeds on the use
of canard controls having leading- and trailing-edge flaps on an airplane
configuration having a wing with a partial-span leading-edge chord-
extension as a means of improving the control and maximum-1lift character-
istics of this type of configuration. Also investigated was the use of
split flaps located at various wing-chord stations shead of the trailing
edge.

For a trapezoidal canard planform, higher values of control effec-
tiveness at high angles of attack were obtained by using a trailing-edge
flap than by deflecting the total canard surface. The magnitude of con-
trol effectiveness at low angles of attack, however, was considerably less
for the canard trailing-edge flap than for the total canard surface. Com-
parison of the control effectlveness associated with a 60° canard planform
and a tralling-edge flap located on this canard surface 1indicates a simi-
lar variation with sngle of attack for both controls, although the magni-
tude of control effectiveness was lower for the canard trailing-edge flap
control than for the case in which the total canard surface was deflected.

The use of a wing with a partial-span leading-edge chord-extension on
a configuration having either the trapezoidal or the delta canard control
indicated improvement in longitudinal stability at high 1ift coefficients
and increased the maximum 1ift coefficient obtainable. Use of a wing
split flap having its leading edge located along the 60-percent-chord line
produced less resultant nose-down moment for a given 1lift increment than
that realized from deflection of a plain flap located at the wing trailing
edge. This forward split flap in combination with the canard surface
deflected for trim indicated a trim 1lift coefficient of 1.0 with an accept-
able static margin at an angle of attack (approximately 13°) suitable for
take-off or landing conditions.



INTRODUCTION

The National Aeronautics and Space Administration is currently con-
ducting general research programs relative to improvement of the longi-
tudinal and lateral stability and control characteristics assoclated
with canard airplane configurations. Various canard configurations are
currently under consideration in connection with the design of super-
sonic transports and high Mach number military aircraft, since these
types of aircraft appear to offer some advantage with regard to aero-
dynamic efficlency at supersonic speeds. (See ref. 1.)

The major problem areas assoclated with canard configurations occur
at subsonic speeds where the following conditions tend to reduce the
desirability of this type of airplane configuration: stalling of the
canard control at moderate local angles of attack, adverse canard-control
wing interference effects, and the inability to make use of wing trailing-
edge flaps to aid in increasing the 1ift for take-off and landing atti-
tudes. The use of high-1ift devices on the canard control has been
investigated and indicates promising results with regard to increasing
trim-1ift range and allowable center-of-gravity travel. (See refs. 2
and 3.) Increases in maximum 1ift and untrimmed maximum lift-drag ratio
at subsonic speeds have also been obtained by use of deflected partial-
span wing leading-edge chord-extensions. These chord-extensions have
their root sections located at approximately the canard control vortex
at the wing leading edge. (See ref. 4.) The problem of obtaining high
1ift at moderate angles of attack evolves from the fact that high-1ift
flaps located at the wing trailing edge produce large nose-down moments
which the canard control is either unable to trim or, in order to trim,
must be operated near or above its stalling point. Using variable-wing
incidence to increase 1lift at moderate angles of attack has been con-
sidered (ref. 3) and appears to produce less resultant moment than
trailing-edge flaps. The increased wing incidence, coupled with the
canard flow field, could produce wing-tip losses resulting in loss of
longitudinal stability at moderate angles of attack for wings having
a low angle for maximum 1ift. The use of split flaps located ahead of
the wing trailing edge, although not as efficlent in producing lift as
trailing-edge flaps, would produce resultant loads closer to the center
of gravity of the configuration and may offer a means of obtaining 1lift
at low angles of attack without producing large resultant nose-down
moments.

The purpose of the present investigation was to provide information
on the use of canard controls having leading-edge and traillng-edge
flaps on an airplane configuration having a wing with a partial-span
leading-edge chord-extension as a means of improving the control and
maximum-1ift characteristics of this type of configuration. Also
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investigated was the use of split flaps located at various wing-chord
stations ahead of the trailing edge as a means of increasing configura-
tion 1ift at low and moderate angles of attack without producing large
nose-down pitching moments. The wing employed in the investigation had
an aspect ratlo of 3.0, a taper ratio of 0.143, and an NACA 65A004 air-
foil section parallel to the plane of symmetry. Various canard controls,
including a trapezoidal planform similar to the basic wing, a 60° delta
planform, and a modified 60° delta planform, were investigated in com-
bination with the basic-wing configuration and the wing configuration
having split flaps located ahead of the wing trailing edge.

SYMBOLS

Data in this paper are referred to the wind-axis system, with the
coefficients nondimensionalized by the area and mean aerodynamic chord
of the basic wing. The moment reference point was located 0C.225%,, ahead

of Ew/h for the wing for all tests unless otherwise noted. All con-
trol deflections are referenced to the fuselage reference line.

Cp drag coefficient, g%%ﬁ
cL 1ift coefficient, é‘éwﬁ
P
Cm pitching-moment coefficient, itching_moment
qSwlw

Cm5 canard-control effectiveness parameter, ACm/Bc

c
Cm6 canard-control trailing-edge-flap effectiveness parameter,

f,c ACm/B

f,c

Ec/h quarter-chord point of mean aerodynamic chord of canard control
Cy wing chord, ft
Cy mean aerodynamic chord of wing, ft
Ew/h quarter-chord point of mean aerodynamic chord of wing

q dynamic pressure, lb/sq ft



Sy wing area, sq ft

a angle of attack, deg

ANCp incremental drag coefficient produced by deflection of wing
split flap

ALy, incremental 1ift coefficient produced by deflection of wing
split flap

Nom incremental pitching-moment coefficient produced by deflec-
tion of wing split flap

8¢ canard-control deflection, positive with trailing edge downm,
deg

af,c canard-control trailing-edge flap deflection, positive with
trailing edge down, deg

5f,w wing-1ift-flap deflection, positive with trailing edge down,
deg

5n,c canard-control leading-edge flap deflection, negative with
leading edge down, deg

sn,w wing partial-span leading-edge chord-extension deflection,
negative with leading edge down, deg

Subscript:

max maximum

Configuration designations:

U basic wing

B body

Cy trapezoidal planform canard control
Co 60° delta planform canard control

C3 modified 60° delta plenform canard control
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MODELS

The model configurations and component parts are shown in figure 1.
The body was a circular ogive, symmetrical in all planes, with a maximum
diameter of 4.50 inches and a fineness ratio of 13.33. The basic wing
had a trapezoidal planform similar to the basic wing of reference b4,
an NACA 65A004 airfoil section parallel to the plane of symmetry, an
aspect ratio of 3.0, a taper ratio of 0.143, and a leading-edge sweepD
angle of 38.52°, A partial-span leading-edge chord-extension which had
a tip extension 20 percent of the basic wing-tip chord and a theoretical
root extension 10 percent of the basic wing-root section was tested with
the basic wing and was fixed at a deflection angle of -30°., The inboard
chord of thils extension was located 7.50 inches from the fuselage cen-
ter line (fig. 1(a)). Hereinafter the partial-span leading-edge chord-
extension will be referred to as the leading-edge chord-extension.

Details of the wing flaps are presented in figure 1(b). The
trailing-edge plain flaps (designated herein as flaps I) were 20-percent-
chord flaps with the leading edge located at the unswept 80-percent-
chord line of the wing. The gap between the wing and the flap was
sealed. Wing flaps II were 20-percent-chord split flaps with a leading-
edge locatlon along the wing 60-percent-chord line. Wing flaps III were
also 20-percent-chord split flaps and had the leading edge located along
the LO-percent-chord line of the wing. All flap deflections are refer-
enced to the fuselage reference plane.

The trapezoidal canard control was of flat-plate section similar
in planform to the basic wing and had a total planform area equal to
16 percent of the total basic wing area. The leading edge of this con-
trol could be deflected to a maximum of -30°; the hinge line for this
leading-edge flap was located at the 20-percent-chord line. The trailing-
edge flap used on this control was hinged at the 80-percent-chord line
and was a full-span plain flap with a sealed gap. The 60° delta plan-
form control was also of flat-plate section and had a total area equal
to 16 percent of the total basic wing area. The hinge line for the
trailing-edge flap of this control was located 1.55 inches from the
unswept trailing edge, and the flap included the tip section of this
control, 1.75 inches in from the tip. (See fig. 1(b).) The modified
60° delta planform control was made by removing the trailing-edge flap
from the basic 60° delta planform, and consequently had a blunt tralling
edge. The hinge line for deflection of the trapezoidal and 60° delta
planform controls corresponded to the quarter-chord point of the mean
aerodynamic chord for each control. The 60° modified delta control was
hinged at the same point as the 60° delta control surface. A photo-
graph of the conflguration having a 60° delta canard and a wing with
leading-edge chord-extension deflected -30° is presented as figure 2.



TESTS AND CORRECTIONS

The present investigation was conducted in the Langley 300-MPH
T- by 10-foot tunnel at a dynamic pressure of approximately 57 pounds
per square foot. The average test Reynolds number based on the wing
mean aerodynamic chord was approximately 2.10 X 106. The model was
mounted on a single support strut and was tested through an angle-of-
attack range from -2° to 26° and at zero sideslip.

Blockage corrections determined by the method of reference 5 have
been applied to the dynamic pressure.and drag, and Jjet-boundary correc-
tions determined by the method of reference 6 have been applied to the
angle of attack and the pitching-moment and drag coefficients. Drag
coefficients have also been corrected for tunnel buoyancy effects.

RESULTS AND DISCUSSION

Figures 3 to 19 present the basic data for the configurations of
the investigation, and a detailed listing of the various combinations
tested 1s presented in table I. Figures 20 to 23 present a summary of
some of the results of the investigation with a detailled listing also
presented in table I.

Iongitudinal Stability

The problem of nonlinear variation of pitching moment with increasing
11ft associated with canard configurations at subsonic speeds is of
prime interest both from the standpoint of determining center-of-gravity
location and the amount of control power required for trim. From the
present investigation 1t may be seen, for example, that the configura-
tion having the trapezoidal canard control and the basic wing has a
static margin of approximately 1 percent @&, at low lifts and a rather

abrupt increase in stability occurring at an angle of attack of about 129,
(See fig. 3 and ref. 4.) This low value of stability at low lifts is
permissible because of the increasing stability with increasing lifts
noted for this configuration and would be desirable from supersonic-
design requirements. $Since the increase in static margin at a high Mach
number should be less than 20 percent (see ref. 7), only slight deflec-
tion of the control surface would be required for trim at the cruise
condition. The abrupt increase in stability occurring above an angle

of attack of 12° for this configuration, however, indicates the pos-
sibility of a control problem existing at the high 1ift coefficients
deslred for take-off or climbout conditions at subsonic speeds. A
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delta canard and trapezoldal wing arrangement, as presented in refer-
ence 4, has indicated a reverse condition. For the same moment refer-
ence point as the trapezoildal canard configuration previously mentioned,
the delta-canard configuration had a static margin of 6 percent ¢y at

low 1ifts and became neutrally stable or unstable at higher 1ifts. (See
fig. 10.) 1In order to make this configuration stable at the higher 1lift
coefficients desired at subsonic speeds, a forward movement of the cen-
ter of gravity would be required. However, the configuration would
become excessively stable at supersonic speeds and thus require higher
control deflection for trim at the cruise condition.

Changing the 60° delta canard planform to a modified 60° delta
planform tended to alleviate the decrease in stability noted for the
60° delta canard configuration at moderate lifts, although the slight
pitch-up tendency was still noted for this planform between angles of
attack of approximately 150 and 20° for &, = 0°. (See fig. 13.) The

indication 1s, however, that proper canard planform, designed with con-
sideration of the longitudinal stability characteristics noted for the
wing alone, should result in more linear pitching-moment variation
throughout the range of lift coefficients obtainable.

Iongitudinal Control

A summary of the control propertles of the configuration having
the trapezoldal canard surface 1is presented in figures 20 and 21, and
a summary of the control characteristics of the configuration having
the 60° delta canard surface is presented in figure 22. For the most
part, the discussion on longitudinal control will be confined to these
summary figures.

The longitudinal control characteristics associated with total
deflectlon of a trapezoidal canard or delta canard control presented in
reference 4 indicate that the configuration having the trapezoidal plan-
form had higher values of control effectiveness than the delta con-
figuration at low angles of attack. The control effectiveness for the
configuration having the delta canard control, however, held up for
higher control deflection and to higher angles of attack than did the
configuration having the trapezoidal canard control. The loss of con-
trol for the trapezoldal canard at moderate angles of attack, and cor-
respondingly moderate 1lifts, is indicated in figure 20(a) of the present
investigation for the condition of canard leading- and trailing-edge
flaps at 0° deflection.

Use of the trailing-edge flap on the trapezoidal canard control,
however, as indlcated in figure 20(a), is seen to have good control
characteristics for the canard at O° deflection, and also indicates



higher control effectiveness than that realized by deflection of the

total trapezoildal canard control at angles of attack above 10° (fig. 20).

Use of the canard trailing-edge and leading-edge flap deflections with-
out deflection of the total canard surface indicates trim up to the
maximum attainable Cp, (fig. 20(a)). The effects of the addition and
deflection of the leading-edge chord-extension to the basic wing on the
1lift and longitudinal stability of the trapezoidal canard configuration
are presented in figure 21; this figure indicates that the addition of
the leading-edge chord-extension ilncreased CL,max from approximately

1.03 to 1.20. Use of the trapezoidal canard control at a &, = 0°, witn

the leading-edge and trailing-edge flaps deflected -20° and 20°, respec-
tively, in combination with the wing having leading-edge chord-extension
deflected -30°, indicates trim 1ift up to a Cj, of 1.15, with a reason-
able level of longltudinal stability existing at trim.

A comparison between total canard deflection and canard trailing-
edge flap deflectlon on the control effectiveness for the 60° delta
canard configuration indicates similar variation of control effective-
ness with angle of attack for either method of control. (See fig. 22.)
Low values of CmBC and Cme are seen to hold up to the maximum

c
angle of attack attained, as p;eviously noted in reference 4. Figure 13
presents the longitudinal control characteristics of the modified 60°
delta canard and indicates essentially the same control characteristics
as the 60° delta canard configuration, except that earlier stalling
occurs for the modified canard surface.

Longitudinal Characteristics of Wing Flaps

The inability of canard airplanes to take advantage of high 1ift
coefficients provided by wing trailing-edge flaps for take-off or
landing at moderate angles of attack is attributed primarily to the lack
of sufficient canard-control power to trim the large nose-down pitching
moments which usually accompany wing-flap deflection. This problem is
illustrated in reference 8 and in figure 14(a) of the present investi-
gation for the condition of a plain wing flap located at the trailing
edge. For teke-off or landing attitudes between 12° and 16°, this
trailing-edge flap is seen to produce 1lift coefficients between 1.0
and 1.2. The nose-down pitching moment, however, is considerably out
of trim even at low lifts with the trapezoidal canard configuration
operating near and above stalled conditions. The configuration having
the wing with the trailing-edge flap in combination with the 60° delta
canard surface indicates similar results (fig. 14(b)) and because of
the lower value of the lift-curve slope for the delta canard control
(ref. 4), this configuration is further out of trim than the trapezoidal
canard configuration. Use of a partial-span split flap, designated
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flap II (fig. 1(b)), located between the 60-percent- and 80-percent-
wing-chord stations appeared to offer a means of obtaining increased
1ift without producing nose-down moments as large as those obtained
with the use of the plain flap located at the trailing edge. A com-
parison of figures 14 and 15 indicates that the split flap located for-
ward of the wing trailing edge provided somewhat less gain in 1ift
throughout the test angle-of-attack range than provided by the trailing-
edge plain flap; however, nose-down pitching moments are considerably
less than those noted for the trailing-edge flap, and of a magnitude
which the canard control should be able to trim. Figure 16 presents

the effectiveness of the trapezoidal canard control in producing trim
in conjunction with wing split flaps II deflected 40° and 500, and indi-
cates that this canard control, deflected 5C in combination with canard
leading-edge flap deflection of -20° and canard trailing-edge flap deflec-
tion of 20°, was able to trim the configuration at a 1ift coefficient
of approximately 1.0 with an acceptable static margin at an angle of
attack (approximately 1%0) suitable for take-off or landing conditions.

Similar results are indicated for the delta canard and trapezoidal
wing arrangement; however, a control reversal is noted for low deflec-
tion of wing split flap II (fig. 17). Considerable nonlinearity in the
variation of pitching-moment coefficient with 1ift coefficient is noted
for the delta canard control deflected in combination with the wing
split flap and is primarily a result of the higher canard deflections
required for trim than were necessary for the trapezoidal canard control.
(see fig. 18.)

Figure 19 presents a comparison of the 1lifting characteristics of
wing split flaps II and III and indicates considerable loss of 1lift for
a given deflection as the flap is moved forward on the wing. The nose-
down pitching moment is considerably less for the most forward flap
location, as would be expected. The most forward flap, however, is
apparently of small value as a result of the small amount of 1ift and
excessive drag produced for extremely large flap deflections. Also,
from unpublished results on a similar type of flap, negative 1lift incre-
ments were noted for flap deflections up to approximately 20°. This
most forward flap, however, may possibly have application as a drag
brake in landing.

The incremental increases in Cy, Cp, and Cp realized by deflec-

tion of wing split flap IJ are presented in figure 23. For the lowest
flap deflection of 10°, a control reversal is noted, in that negative
1ift and accompanying positive pitching moment are prevalent throughout
the angle-of-attack range. The highest flap deflection is seen to pro-
duce a value of ACy of approximately 0.20 in the moderate and high

angle-of-attack regions when accompanied by -30° deflection of the wing
leading-edge chord-extension. Reductions in drag are also realized for
this configuration when compared with the configuration having the
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leading-edge chord-extension off. As previously noted, the nose-down
pitching moments per degree of deflection of wing split flap II appear
to be considerably less than those noted from deflection of the trailing-
edge plain flap. (See fig. 1k.)

SUMMARY OF RESULTS

An investigation has been conducted at low subsonic speeds on the
use of canard controls having leading- and trailing-edge flaps on an
airplane configuration having a wing with a partial-span leading-edge
chord-extension as a means of improving the control and maximum-1ift
characteristics. Also investigated was the use of split flaps located
at various wing-chord stations ahead of the trailing edge. Results of
this investigation may be summarized as follows:

1. Considerable improvement in longlitudinal stability, and reduc-
tion in the nonlinear variation of pitching moment with increasing 1ift
characteristic of canard configurations, appears to be possible by use
of a canard planform which 1s designed with consideration of the lon-
gitudinal stability characteristics noted for the wing alone.

2. For a trapezoidal canard planform, higher values of control
effectiveness at high angles of attack were obtalned by using a trailing-
edge flap than by deflecting the total canard surface. The magnitude
of control effectiveness at low angles of attack, however, was consider-
ably less for the canard trailing-edge flap than for the total canard
surface. Comparison of the control effectiveness associated with a 60°
canard plenform and a trailing-edge flap located on this canard surface
indicates a similar variation with angle of attack for both controls,
although the magnitude of control effectiveness was lower for the canard
trailing-edge flap control than for the case in which the total canard
surface was deflected.

3. The use of a wing with a partial-span leading-edge chord-
extension on a configuration having either the trapezoidal or the delta
canard control indicated improvement in longitudinal stability at high
1ift coefficients and increased the maximum 1ift coefficient obtainable.

L. Use of a wing split flap having its leading edge located along
the 60-percent-chord line produced less resultant nose-down moment for
a given 1ift increment than that realized from deflection of a plain
flap located at the wing trailing edge. This forward split flap in
combination with the canard surface deflected for trim indicated a
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trim 1ift coefficient of 1.0 with an acceptable static margin at an
angle of attack (approximately 1%0) suitable for take-off or landing

conditions.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., February 2, 1962.
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(a) Variation of pitching-moment coefficient with 1lift coefficient.
configuration associated with deflection of canard surface and leading- and trailing-edge

Figure 20.- Longitudinal stability and control characteristics of basic-wing—trapezoidal-canard
flaps of canard surface.
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(b) Variation of control effectiveness parameter with angle of attack.

Figure 20.- Concluded.
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Figure 21.- Effects of addition and deflection of wing leading-edge
chord-extension on 1lift and longitudinal stebility characteristics
associated with configuration having trapezoidal canard control.
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Figure 22.- Comparison of longitudinal control characteristics assocl-
ated with deflection of delta canard and trailing-edge flap of delta
canard. ®p y = -30°; of w = 0°.
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Figure 23.- Incremental effects of deflection of wing split flaps on

longitudinal aerodynamic characteristics of configuration having
wing with split flaps located between O. 6ch and O. 80cW and having

trapezoidal canard surface with all control deflections at 0°.
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